首页> 外文OA文献 >Ultimate Depth Resolution and Profile Reconstruction in Sputter Profiling with AES and SIMS
【2h】

Ultimate Depth Resolution and Profile Reconstruction in Sputter Profiling with AES and SIMS

机译:溅射中的最终深度分辨率和轮廓重建   使用aEs和sIms进行分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

New developments in quantitative sputter depth profiling during the past tenyears are reviewed, with special emphasis on the experimental achievement ofultrahigh depth resolution (below 2 nm for sputtered depths larger than 10 nm).In this region, the depth resolution function generally is asymmetric(i.e.non-Gaussian) and it is governed by the three fundamental parameters:atomic mixing length, roughness and information depth. The so calledmxing-roughness-information depth (MRI)-model and its application to thequantitative reconstruction of the in-depth distribution of composition, with atypical accuracy of one monolayer and better, is demonstrated for SIMS and AESdepth profiles. Based on the combination of the above three parameters, theultimate depth resolution is predicted to be about 0.7-1.0 nm. Up to now,values of 1.4-1.6 nm have been reported, and the use of low energy molecularions, e.g. by using sulfur hexafluoride as sputtering gas, has recently pushedthe mixing length down to 0.4-0.6 nm. However, particularly in depth profilingof multilayers, it can be shown that minimizing the rouhgness parameter,including the straggling of the mixing length, is most important for theachievement of the ultimate depth resolution.
机译:回顾了过去十年中定量溅射深度分布的新进展,特别着重于超高深度分辨率的实验成果(对于大于10 nm的溅射深度,低于2 nm)。在该区域,深度分辨率函数通常是不对称的(即非高斯),它受三个基本参数控制:原子混合长度,粗糙度和信息深度。针对SIMS和AES深度剖面,证明了所谓的粗糙度信息深度(MRI)模型及其在组分深度分布的定量重建中的应用,具有典型的单层精度甚至更高。基于以上三个参数的组合,最终的深度分辨率预计约为0.7-1.0 nm。迄今为止,已经报道了1.4-1.6nm的值,并且使用了低能分子,例如,碳纳米管。通过使用六氟化硫作为溅射气体,最近将混合长度降低到0.4-0.6 nm。但是,特别是在多层的深度剖析中,可以证明,使鲁氏度参数(包括混合长度的变化)最小化对于实现最终深度分辨率至关重要。

著录项

  • 作者

    Hofmann, S.;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号